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Abstract
The shared autonomous vehicle (SAV) system is considered as an efficient transportation mode in the future. In the literature,
optimization of SAV systems has been extensively studied. However, SAV systems could bring greater social benefits if
we could use them with existing public transportation systems, such as bus rapid transit (BRT), in an integrated manner.
This study proposes a model of SAV-BRT system, an integrated system that takes advantage of the flexibility of SAVs
and the mass transport capability of BRT. The proposed model is based on a dynamic traffic assignment model so that it
captures important features of SAV-BRT system, such as endogenous traffic congestion, detour and waiting of SAVs, BRT’s
dynamic scheduling. The model is formulated as a multi-objective optimization problem so that trade-off relations regarding
the system’s performance can be explicitly analyzed. The behavior of the model is investigated by conducting numerical
experiments based on actual travel data obtained from an urban area in Japan. As a result, we confirmed that the model
behaves reasonably, and several insights on SAV-BRT systems have been obtained.

Keywords Automated vehicle · Bus rapid transit ·
Aggregated vehicle routing and passenger pickup and delivery with time window · Infrastructure design

1 Introduction

1.1 Background

The shared autonomous vehicle (SAV) system is considered
as an efficient transportation mode in the future. It transports
people using SAVs, which are autonomous vehicles that are
shared by society, with optimized routing and passenger
pickup/delivery and ridesharing [6, 13]. Due to this nature,
SAV systems can be considered as a new type of public
transport. Compared with privately owned vehicles, SAV
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systems would be efficient as many travelers can share
one vehicle, resulting in less traffic congestion and parking
demand. Compared with conventional fixed-route public
transits, SAV systems would have high flexibility regarding
routing and schedule and small passenger capacity. In the
literature, optimization of operation of SAV systems has
been extensively studied [6, 9, 17].

SAV systems could bring greater social benefits if we
could use them with existing public transportation systems.
Fixed-route public transits, such as bus rapid transit (BRT)
and trains, have significantly larger passenger capacity
than SAVs. Therefore, it would be possible to design
integrated public transportation systems that take advantage
of the advantages of both SAVs and fixed-route transits.
For example, fixed-route transits could transport travelers
on routes with high demand. SAVs could serve as an
access/egress transportation mode to stations or a door-
to-door transportation mode; because of the flexibility of
the SAV system, the operation mode can be dynamically
optimized depending on the demand profile. Such integrated
public transportation systems might be efficient (in terms of
operation cost, traveler cost, and infrastructure cost) for both
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of high demand urban areas and sparse demand rural areas.
Hereafter, we call such an integrated transportation system
as SAV-BRT system.

It has been pointed out that there exist strong trade-off
relations in the design of SAV systems [17]. For example, an
SAV system could be designed to maximize the passenger
benefit or the operator benefit. The result of case studies
[17] showed that the total travel time of passengers and
the infrastructure construction cost vary by a factor of two
or three depending on the design. This difference would
be very significant for the society, and it is necessary to
clarify what trade-off relations exist before designing an
SAV system. SAV-BRT systems may have larger trade-off
relations, because they have higher degree of freedom in
design.

1.2 Literature Review

Optimization of SAV systems has been extensively studied
in the literature. One of the most popular approaches is
to model SAVs’ routing problem as the vehicle routing
with pickup and deliveries with time windows problem [1–
3, 15, 20]. In this approach, the problem becomes mixed
integer programming problem with a very large number of
variables, making the problem very difficult to solve. To
address this issue, some studies have proposed aggregated
versions of the problem in which SAVs and travelers are
considered as continuous flow [9, 17], in accordance to the
common method in static and dynamic traffic assignments.
Other approaches such as multi agent simulation and graph
algorithms have been also used [6, 16].

Trade-off relations in SAV and related transportation
systems have been pointed out. For example, travelers’ total
travel time and the number of SAVs would be in a trade-
off relation: the former will be small when the latter is
small, and vice versa. In addition, SAV systems can be
operated to maximize various operation criteria, such as
operator profit, travelers’ welfare, and social welfare. The
realized state would be significantly different depending
on the choice of the operation criteria. Thus, it would
be important to investigate such trade-off relations in the
planning phase of SAV-BRT systems. Docherty et al. [4]
studied general topics related to these trade-offs in the
context of the governance of smart mobility. Aiko et al.
[3] numerically investigated trade-offs between total travel
time and total discomfort values of passengers due to
ridesharing with strangers. Ruch et al. [16] numerically
investigated trade-offs between the number of SAVs and the
operational performance. Seo and Asakura [17] numerically
investigated trade-offs among SAV systems’ characteristics
by using multi-objective optimization theory [5].

Models for integration of SAV systems and fixed-route
transits have been proposed by some recent studies. Levin

et al. [10] proposed an optimization model for SAV systems
with public transit. The specification of transit systems
is given and not subject to optimization. Wen et al. [24]
proposed an agent-based simulation method for transit-
oriented SAV systems. The main idea is to model the
demand-supply interaction. Pinto et al. [14] proposed a
design problem for transit networks and SAV fleet size.
Operation of SAVs is described by agent-based simulation.
Gurumurthy et al. [8] investigated the role of SAV systems
as first-mile and/or last-mile travel modes to existing transit
systems. Shan et al. [18] proposed a framework for a transit
network design where SAVs are used for first-mile travel.
Operation of SAVs is modeled very simply: the travel time
is fixed to the average travel time between regions. In
summary, there have been no studies on full integration of
SAVs and BRTs, in which they are modeled with equal
granularity and optimized simultaneously. In addition, the
trade-offs in SAV-BRT systems have not been explicitly
investigated.

1.3 Objective

The objective of this research is to develop an optimization
model for SAV-BRT systems (i.e., integrated public
transportation system with shared autonomous vehicles and
fixed-route transits) and investigate its behavior, especially
trade-off relations, based on actual travel data. The proposed
model is based on a dynamic traffic assignment (DTA)
model [17] so that it captures important features of SAV-
BRT system, such as endogenous traffic congestion, detour
and waiting of SAVs, BRT’s dynamic scheduling. The
model is formulated as a multi-objective optimization
problem [5] so that trade-off relations can be explicitly
analyzed. The behavior of the model is validated by
conducting numerical experiments based on actual travel
data obtained from an urban area in Japan.

2Model

In this section, the formulation and solution methods for
dynamic system optimum (DSO)-based SAV and BRT
system optimization problem are described. The outline
of this model is explained in Section 2.1, the formulation
is shown in Section 2.2, and the solution method of this
problem is explained in Section 2.3.

2.1 Outline of theModel

The proposed model assumes that SAVs and BRTs are the
only available transportation modes in the considered urban
area. SAVs’ movement can be flexibly adjusted depending
on the demand, whereas BRTs’ route is fixed as in the public
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transit. Specifically, the following factors are determined
simultaneously.

– aggregated SAVs’ dynamic routing problem with
passengers pickup and delivery

– passengers dynamic ridesharing matching
– fleet sizing
– road network design
– parking space assignment
– BRTs’ routes and schedule design
– travelers’ transportation mode assignment

This model is formulated as a multi-objective optimiza-
tion problem [5] with 7 objective functions. The objective
functions are

– T : total travel time of travelers
– D, ̂D: total travel distance of SAVs and BRTs,

respectively
– N, ̂N : number of SAVs and BRTs, respectively
– C: total cost of the infrastructure construction
– G: total number of links determined as the BRT lanes

This study models SAV-BRT systems by considering its
four sub-modules: network, SAV, BRT, and travelers. Their
characteristics are explained in the following sub-sections.

2.1.1 Network

The concept of time-expanded network [17], shown in
Fig. 1, is employed to describe the dynamic traffic

Fig. 1 An example of time-expanded network

assignment of SAVs, BRTs, and travelers in a network. A
network is composed of nodes and links. SAVs can travel the
network under capacity constraints. BRTs can only travel
fixed routes in the network. Travelers can travel the network
by riding SAV or BRT.

Each link has its traffic capacity, and the excess of SAVs
over the capacity cannot enter the link. Each node also
has its storage capacity, and the excess of SAVs over the
capacity cannot wait at the node. Both link traffic capacity
and node storage capacity have maximum and minimum
values, and they can be increased from the minimum to
the maximum by infrastructure investment in the network
planning phase.

BRTs travel the network using links with lanes for BRTs
only (i.e., BRT lanes). BRT lanes are designated network
planning phase, and they will not change during operation.
BRT lanes limit the link traffic capacity because they
occupy a part of the link.

2.1.2 SAV

SAVs move for travelers’ transportation or parking, and
SAVs stop when they are parked at the node or when they
are caught in traffic congestion. The model for SAV is
basically identical to that of Seo and Asakura [17].

The traffic congestion is represented by the point queue
model with limited queue length. SAVs always run on the
links at the free flow speed, and SAVs cannot enter the
link when the traffic volume of SAVs reaches the link
traffic capacity. SAVs which cannot enter a link must wait
at the node which is the starting point of the link. When
the volume of waiting SAVs at the node also reaches the
node storage capacity, SAVs cannot enter the node. That is,
congestion is expanded. The dynamic route is determined
by solving the optimization problem.

SAVs have pre-determined passengers’ capacity, and
SAVs can transport one or more travelers with ridesharing
under this constraint. How and which passengers are loaded
by SAVs is determined by solving the optimization problem.

2.1.3 BRT

BRTs run along the BRT lanes. Thus, BRTs are free from
traffic congestion and always run according to the schedule.

BRTs’ routes design and decision of BRTs’ schedules are
determined by solving the optimization problems. BRTs’
routes design means both the decision of the number of
BRT routes and routing of BRTs. BRTs’ schedules mean
the decision of the frequency of BRTs and BRTs running
intervals.

This model can describe a balance between the use of
SAVs and BRTs. Because BRTs are mass transportation,
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passengers’ capacity of BRTs is larger than that of SAVs
generally. Thus, passengers’ capacity of SAVs and BRTs
are given separately. However, considering that BRTs have
to wait at every stop as the conventional transportation,
the average speed of BRTs is slower than that of SAVs.
Thus, the average speed of SAVs and BRTs are also given
separately. In this way, the balance of SAVs and BRTs which
have both merit and demerit is expressed in this model.

2.1.4 Travelers

Time-dependent origin-destination (OD) demand of all
travelers is defined by origin and destination nodes,
departure time, and allowable maximum travel time. All
travelers need to finish their travel within their own
allowable maximum travel time.

Travelers move to their destination by SAV or BRT, not
on foot. Thus, when travelers cannot find both SAVs and
BRTs or when SAVs and BRTs are filled with passengers,
travelers must wait at the node without moving.

Travelers can mutually transfer between SAVs and BRTs
at station nodes by spending given transfer time.

2.2 Formulation

DSO-based SAV-BRT system optimization problem is for-
mulated according to the principles described in Section 2.1.

The definition of variables is summarized in the Table 1,
and the formulation is as follows.
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ŷ
k,t
s,s0 ≥ 0 ∀s, t, k ∈ Tk (36)

gm
ij ∈ {0, 1} ∀ij, i �= j,m (37)

z
m,t
0i ∈ {0, 1} ∀i, m, t (38)

102



International Journal of Intelligent Transportation Systems Research  (2023) 21:99–114

Table 1 List of the mathematical notation

variable definition

T total travel time of travlers

D total travel distance of SAVs
̂D total travel distance of BRTs

N total number of SAVs
̂N total number of BRTs

C total cost of the infrastructure construction

G total number of links which are determined as the BRT lanes

xt
i,j number of SAVs starting to move the link ij at time step t

y
k,t
s,ij number of travelers, who started to move to the node s at time step k, starting to move the link ij at time

step t by SAV

ŷ
k,t
s,ij number of travelers, who started to move to the node s at time step k, starting to move the link ij at time

step t by BRT

w
k,t
s,i number of travelers, who started to move to the node s at time step k, transferring from BRT to SAV at

the node i at time step t

ŵ
k,t
s,i number of travelers, who started to move to the node s at time step k, transferring from SAV to BRT at

the node i at time step t

z
m,t
ij number of BRTs starting to move the link ij at time step t (m = 1, 2, . . . , n)

tij SAV’s free-flow travel time of of the link ij if i �= j

tii waiting time at the node i for one time step

t̂ij BRT’s travel time of the link ij

t ′ time cost of tranxferring between SAVs and BRTs

dij distance of the link ij

cij unit cost of expanding traffic capacity of the link ij

ci unit cost of expanding storage capacity of the node i

ρ passengers capacity of one SAV

ρ̂ passenger capacity of one BRT

μij traffic capacity of the link ij

κi storage capacity of the node i

μ̂ij number of SAVs which will be occupied by setting BRT lane at the link ij

μmax
ij maximum allowable value of μij

κmax
i maximum allowable value of κi

μmin
ij minimum allowable value of μij

κmin
i minimum allowable value of κi

n maximum number of BRT routes in the network

am
i if the node i is starting point of BRT route, this value is 1. if not, this value is 0. (m = 1, 2, . . . , n)

bm
i if the node i is terminal point of BRT route, this value is 1. if not, this value is 0. (m = 1, 2, . . . , n)

gm
ij if the link ij is determined as a part of BRT route, this value is 1. if not, this value is 0. (m = 1, 2, . . . , n)

Mk
rs time-depend demand of travelers with origin r , destination s, and departure time step k

Tk subset of time step for travelers with departure time step k

tmax final time step

This model is formulated as a multi-objective mixed
linear integer optimization problem. Equations (2) and (8)
are the definitions of objective functions. Eq. (2) defines the
total travel time of travelers. Equation (3) defines the total
travel distance of SAVs, and Eq. (4) defines that of BRTs.
Equation (5) defines the total number of SAVs, and Eq. (6)
defines that of BRTs. Equation (7) defines the total cost

of infrastructure construction. Equation (8) defines the total
number of the links determined as the BRT lanes, and this
objective function is needed for the removal of subtour.

Equation (9) means the conservation of SAVs, Eq. (10)
means that of BRTs, and Eqs. (11) and (12) mean that
of travelers. The conservation of travelers is represented
by two equations, Eq. (11) is for the SAV users and
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Eq. (12) is for BRT users. Figures 2, 3 and 4 illustrate
these conservation laws in the time-expanded network. In
these figures, the circles show nodes and the arrows show
movements of link. In addition, spatial change is shown by
horizontal change, and temporal change is shown by the
vertical change in these figures. The relation of inflow and
outflow on node i at time step t is simply represented.

Equations (13) and (14) mean the restrictions of
travelers’ movement. Equation (15) means that the number
of SAVs moving the link ij is limited to the link traffic
capacity. Equation (16) means that the number of SAVs
waiting at the node i is limited to the node storage capacity.

Equations (17) and (18) mean the restriction of the OD.
Equations (21)–(26) are the constraints about the

determination of BRT routes. In these constraints, the binary
variables am

i , bm
i representing starting and terminal nodes of

BRT routes and the binary variables gm
ij which indicate the

link is a part of the BRT routes or not are used.
BRTs are constrained to run on the links determined as

a part of BRT routes by Eq. (27). In addition, Eqs. (28)
and (29) are constraints defining the number of BRTs at the
starting and terminal nodes, and BRTs are constrained to
depart from the starting node and terminate at the terminal
node.

The objective function G and Eq. (30) are needed for
the removal of subtour, which is a technical concept used
in routing optimization problems [22]. It is a circular
route which doesn’t have both the designated starting and
terminal nodes. Thus, apart from the regular route which
has the starting and terminal nodes defined by am

i and
bm
i , the subtour is formed as a circular route around a

certain section; thus, a subtour is not appropriate solution
to the considered problem and should be avoided. The
subtour on which BRTs don’t run can be eliminated by
minimizing the objective function G because it doesn’t
affect the other objective functions. However, if BRTs run
on the subtour and transport travelers, the other objective
functions are affected by the subtour. Thus, the objective
function G cannot handle this situation, and Eq. 30 is
needed. Equation (30) means that the initial number of
BRTs at every link is defined as zero. When BRTs run on
the subtour, Eq. (39) holds at every time step in Eq. (10).
Because the initial number of BRTs at every link is zero by
the constraint of Eq. (30), the number of BRTs in the subtour
is constantly zero.

{

z
m,t
0i = z

m,t
i0 = 0

∑

j,i �=j z
m,t−t̂j i

j i = ∑

j,i �=j z
m,t
j i = 1

(39)

Equations (31)–(38) are the non-negative constraints.

Fig. 2 Conservation of SAVs in time-expanded network

2.3 SolutionMethod

Solving multi-objective optimization problem means draw-
ing its Pareto frontier, which is a set of Pareto optimal
points, of objective functions [5]. In this study, the weighted
sum method is employed as a numerical solution method.
The single objective optimization problem represented in

Fig. 3 Conservation of BRTs in time-expanded network
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Fig. 4 Conservation of travelers in time-expanded network

Eq. 40 is calculated. The constraints are the same as the
original problem: Eqs. (2)–(38).

minαT T +αDD+α
̂D

̂D+αNN +α
̂N

̂N +αCC+αGG (40)

The coefficients of each objective function are non-
negative constants, and they are weights representing the
priority of each objective function. The solution of problem
Eq. (40) is Pareto optimal. Thus, the Pareto frontier is drawn
approximately by obtaining the solution of problem Eq. (40)
with different weight values. This is called the weighted-
sum method and one of the standard methods to solve
multi-objective optimization problems [5].

The model is classified as mixed integer linear pro-
gramming, which is somewhat complicated but solution
methodology is established. In this paper, the model has
been solved by the branch and bound method of Gurobi
Optimizer [7]. More efficient algorithms (e.g., application
of Dantzig–Wolfe decomposition [23]) may be developed
by considering the structure of the problem, and this is one
of the future works.

2.4 Properties of theModel

The proposed model can treat important features of SAV-
BRT systems, such as endogenous traffic congestion, detour
and waiting of SAVs, and BRT’s scheduling, but has
limitations.

Firstly, the model does not identify which traveler uses
which SAV and which traveler is doing ridesharing. In
this model, we cannot trace the specific routes of SAVs

and travelers because the flows of SAVs and travelers are
treated as the quantity on each link or node. Similarly,
some travelers may experience too many transfers between
SAVs and BRT in this model. This can be considered as a
shortcoming of this model.

Secondly, the model cannot distinguish parking SAVs
and waiting SAVs in traffic jams on nodes. SAVs located on
nodes, which are waiting for parking or in congestion, are
treated as the same in this model.

3 Numerical Experiment

In this section, the behavior of the proposed model is
numerically investigated based on actual travel data. In
order to investigate the model’s behavior, the following
scenarios are considered:

– SAV only case (n = 0) (in this case, the proposed model
is reduced to that of Seo and Asakura [17])

– SAV and BRT case. The number of BRT routes is one
(n = 1).

– SAV and BRT case. The number of BRT routes is two
(n = 2).

For each scenario, the Pareto frontier is derived to
investigate the trade-off relations in the SAV-BRT system. In
addition, to investigate the detailed behavior of the model,
spatial distribution of BRT routes, SAV flow, and traveler
flow and dynamic traffic states are derived for some specific
Pareto optimal states.

105



International Journal of Intelligent Transportation Systems Research  (2023) 21:99–114

3.1 Data andModel Specification

In this numerical experiment, the network data and the OD
data in Omiya-ku, Saitama City, Japan were used. This
data is made by estimating traffic demand based on the
augmented national digital road map database [19] and the
sixth person trip survey in Tokyo metropolitan area [21] in
high resolution with the method proposed by Mitani et al.
[12].

The optimization problem assuming commuting hours
in the morning was calculated. The range of data is 9
km in length and 10 km in width, centered in Omiya
Station. The region of this numerical experiment is shown
in Fig. 5. We discretize the area into grid-shaped meshes
to aggregate the demand and network. The network data
has information of the number of links connected between
each mesh. The capacity of each link in the test network is
set to be proportional to the number of actual roads at the
corresponding location. Therefore, we consider that the test
network reflects some properties of the actual road network.

For example, the central area of the test network (meshes
21 and 22 in Fig. 5) is the downtown (i.e., around Omiya
station) of this area, and is connected by major roads to
nearby meshes. Especially, the number of actual roads from
the western areas is large. This information is reflected to
the test network: the traffic capacity from meshes 15 and 16
is defined to be large.

The OD data is defined by origin and destination nodes
and departure time of every trip. The OD data from 7:30
a.m. to 8:00 a.m. was used in this numerical experiment to
assume the DSO assignment. The total number of trips was
42986. Because travelers’ allowable maximum travel time
is assumed 30 minutes, the flow for a total of one hour from

7:30 a.m. to 8:30 a.m. was calculated. In order to decrease
the calculation cost, all destination nodes were aggregated
into 5 nodes which are the most popular destinations.

The passenger capacity of a SAV is 2 persons, and that of
a BRT is 50 persons. The speed of SAVs is 30 km per hour,
and that of BRT is 20 km per hour. The values of the other
model parameters are summarized in Table 2.

The number of variables and constraints, and computa-
tion time for this numerical experiment are listed in Table 3.
The number of links including the ones for expressing wait-
ing at nodes is 210, and the number of nodes is 42 in this
network. The computation time strongly depends on the
number of integer variables in the problem, which is almost
proportional to the number of routes of BRT (variable n).
For example, in the case study of Section 3, the number of
decision variables are as follows: 82498 continuous vari-
ables for n = 0 cases, 164659 continuous and 15372 integer
variables for n = 1 cases, and 164659 continuous and 30744
integer variables for n = 2 case. The number of constraints
is as follows: 44613 for n = 0 cases, 85148 for n = 1 cases,
and 113164 for n = 2 cases. The computation time is as
follows: 9 seconds (exact solution) for n = 0 cases, 7095
seconds (2 hours) for n = 1 cases (approximate solution
with 0.79% duality gap), and 235918 seconds (66 hours) for
n = 2 cases (approximate solution with 2.69% duality gap).

Regarding to accuracy, for n = 0 cases, we have always
obtained exact solutions. For n = 1 cases, we generally
obtained solutions with duality gap less than 1%. However,
when αD was large, solution time tends to be large. In such
cases, we have accepted solutions with duality gap less than
3%. Likewise, for n = 2 cases, we generally obtained
solutions with duality gap less than 3%, but we seldom
accepted ones with 5%.

Fig. 5 The study area: Omiya,
Saitama, Japan
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Table 2 Model parameters

parameter value

ρ 2 [person/veh]

ρ̂ 50 [person/veh]

cij 1 [/veh]

ci 1 [/veh]

μ̂ij 15 [veh]

t ′ 1 [time step]

tmax 60 [time step]

speed of SAVs 30 [km/h]

speed of BRTs 20 [km/h]

Because of the scale of the problem and integer variables,
we cannot always obtain exact solutions. Instead, we
obtain approximate solutions, and the accuracy of the
approximation is evaluated by using the duality gap. We
consider that we have successfully obtained reasonably
accurate solutions, as the duality gaps of solutions were
small (few percentages) and the shapes of Pareto frontiers
were almost convex.

3.2 Results and Discussion

3.2.1 Pareto Frontiers

The Pareto frontiers of the three scenarios are shown in
Fig. 6. Note that an actual Pareto frontier is 7-dimensional
object (i.e., relation among T , D, ̂D, N, ̂N, C, G), which is
impossible to illustrate. In order to show important char-
acteristics of the Pareto frontiers, we show 2-dimensional
relation (i.e., cross section of the 7-dimensional Pareto
frontier) between D and another objective function. The
objective function D, total distance traveled by SAVs, is
chosen because the mode choice between SAVs and BRT is
one of the important points in the model. Note that Pareto
frontiers of the other two objectives also have similar con-
vex shapes, and thus it is not very informative to show all
of the possible combinations of two objectives out of seven
objectives. Also note that the number of actual Pareto solu-
tion is infinity, thus the results shown in Fig. 6 is just an
approximation.

The Pareto frontiers were obtained by the following
procedure. The value of αD , the weight parameter for D,
was varied over a sufficiently wide range (roughly 0.0003–
30), whereas the rest of weights were fixed to the values
shown in Table 4 for all scenarios.

The meanings of the values of weights shown in Table 4
are not strictly realistic. The aim of the multi-objective
optimization employed by our study is to derive the trade-
off relations between different objectives, not to derive a
single optimal solution with specific weights. The trade-
off relation is represented as Pareto frontier, a set of
Pareto efficient solutions. Pareto frontiers can be derived
by changing the weight parameters from 0 to infinity. The
Pareto frontiers we obtained are summarized in Fig. 6.
The specific value for weights has little meaning in the
context of investigating the trade-off relations, and thus we
have not specified the weight values considering rigorous
consistency to the reality.

Theoretically, it is possible to determine the values of
weights and derive a single solution of the model. However,
this approach has a limitation. That is, we cannot determine
the weight values precisely, because it should be determined
by the society’s political decision making (some societies
prioritize traveler’s benefit, others prioritize environment,
etc.). Our multi-objective approach avoids this issue by
obtaining various possible solutions. By deriving such
various possible solutions, future policy planners would be
able to choose the most suitable solution that matches the
society’s goal.

The values of weight parameters shown in Table 4 are
determined so that most of the objective functions are not
negligible in the optimization problem. For example, T

(total travel time of ten-thousands passengers) is always
substantially larger than N̂ (number of BRTs). Thus, if
we choose similar values for their weights, we cannot
obtain reasonable solutions as some of the elements become
completely negligible. This is not useful to demonstrate
the effects of other objectives. The weight values in
Table 4 were determined in order to maintain balance
among objective function values so that we can avoid such
inappropriate solutions. Please note that Pareto frontiers of
the other two objectives also have similar convex shapes,
and thus it is not very informative to show all of the
possible combinations of two objectives. Please also note

Table 3 The computational cost

n = 0 n = 1 n = 2

number of continuous variables 82498 164659 164659

number of integer variables 0 15372 30744

number of constraints 44613 85148 113164

calculation time 9[s] (GAP: 0%) 7095[s] (GAP: 0.79%) 235918[s] (GAP: 2.69%)
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Fig. 6 Comparison of Pareto frontiers

that the weight on G is exception and is set as small
as possible. This is a technical objective function that
eliminates mathematical errors called “subtour” and does
not have physical meaning.

Approximated Pareto optimal solution can be obtained
with high accuracy by using the weighted-sum method. The
reasons are as follows. First, the continuous relaxation of

the problem is a linear programming (which is convex),
and therefore we can expect that a lower envelope (i.e.,
Pareto frontier) of the solutions is also convex. Thus, an
accurate solution obtained by the weighted-sum method can
be considered as an accurate Pareto optimal solution. We
confirmed that the obtained solution was actually accurate
(i.e., small duality gap). Second, the true Pareto frontier is

Table 4 The weight parameters for the Pareto optimal state

αT αD α
̂D αN α

̂N αC αG

for Pareto frontiers in Fig. 6 0.05 30 0.0003–30 8 80 1 0.001

for the other analysis 0.05 30 30 8 80 1 0.001
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expected to be convex. The obtained solutions in Fig. 6 are
almost convex. This is supporting evidence that the solution
is reasonable.

According to Fig. 6, various trade-off relations in the
SAV-BRT system are clarified. Pareto frontiers are obtained
as monotonic curves with negative slopes. This means that
the two variables are in a trade-off relation.

In the T –D relation, the total travel time of travelers T

and the total travel distance by SAVs D are in trade-off
relation for each scenario. It means that the more actively
SAVs are used, the faster transportation systems can be
realized. By comparing the scenarios, it is clear that the
travel time generally increased by introduction of BRTs,
while the distance traveled by SAVs decreased. This is
because the more BRTs are used, the fewer travelers use
SAV, but BRTs are generally slower than SAVs; this usage
pattern is evident in D̂–D relation. Thus, introduction of
BRT enables efficient transportation systems in terms of
traffic congestion, but it slightly increases average travel
time of travelers.

The N–D relation shows that the introduction of BRTs
decreases the number of required SAVs N . In SAV only
case (n = 0), the allowable range to the number of SAVs
is narrow: roughly 4600–5400 SAVs are required regardless
of operation pattern. When BRT routes are introduced, the
allowable ranges are significantly increased: roughly 4050–
5300 SAVs for 1 route scenario, and 3800–5100 SAVs for
2 route scenario. There are 2 implications from this result:
1) the number of SAVs can be significantly decreased by
introducing 1 or 2 BRT routes; 2) the operational flexibility
of the SAV system also is increased by introducing BRTs.

The N̂–D relation confirms that the distance traveled by
SAVs is significantly decreased by increasing the number of
BRTs N̂ . This is a reasonable result.

The C–D relation shows that the range of the infrastruc-
ture cost C is almost the same for all scenarios. However,
the distance traveled by SAVs can be significantly decreased
by BRTs without increasing the infrastructure cost. It means
that the introduction of BRTs is a cost effective approach to
reduce traffic congestion.

According to the above results, the introduction of
BRT enables flexible operation of SAVs and efficient
development of infrastructure, but tends to increase the
travel time of travelers.

3.2.2 BRT Routes

Figure 7 (a) and (b) show BRT routes in a Pareto optimal
state in two scenarios with the same weight values shown in
Table 4; hereafter, we use these parameter values, and the
weight value for D is set to demonstrate situations where
BRT is intensively utilized by travelers. In Fig. 7 (a) and
(b), the red links and the blue links represent the BRT

route, and the red nodes represent the destination nodes of
travelers; especially the two red nodes in the center of the
map corresponds to the area near the Omiya station, which
attract many travelers.

According to the result, the BRT routes are determined to
pass the central area regardless of the scenario. In addition,
in the two routes scenario, both of the BRT routes go
through the central area from the west. It means that the
model automatically identifies where should be transfer
point of the public transit. We considered this result reflects
the actual road and travel patterns in the area.

Figure 7 (c) and (d) show BRT routes with the same
weight values as Fig. 7 (a) and (b) except for αD . In these
two plots, αD was set to 0.03, meaning that usage of SAVs
is strongly encouraged. By comparing these results, we can
confirm that the route length, the number of BRT vehicles,
and passing nodes are significantly different. The length
and number of BRT vehicles (roughly 20 vehicles per route
in αD = 30 case, whereas roughly 50 vehicles per route
in αD = 0.03 case) are smaller in αD = 0.03 cases
due to increased usage of SAVs. This is an intuitive result.
On the other hand, the difference of passing nodes is not
intuitive. In fact, this difference came from the passenger
transportation capabilities of both modes and road capacity.
In αD = 30 case, BRT routes are placed at the central area
of Omiya city where travel demand and road capacity are
large. And by operating BRT and SAVs very frequently,
it transports the large demand efficiently. In αD = 0.03
case, however, BRT is not frequently operated. Such low
frequency operation would not be sufficient to transport
the large demand in the central area and decreases traffic
capacity for SAVs (because we assume that BRT route
blocks one of the lanes). Thus, BRT route is placed to low
demand areas.

In summary, selection of BRT routes is affected by
the mechanism that decreases traffic capacity of a road.
Thus, if operational frequency of BRT is low, BRT routes
are not placed at high demand areas, because otherwise
BRT blocks SAV traffic too significantly. Contrarily, if
operational frequency of BRT is high, BRT routes are placed
at high demand areas so that roads can be utilized more
efficiently.

3.2.3 SAV Flow

In Fig. 8, the comparison of SAVs’ flow between the
DSO assignment with and without BRTs is shown. In this
comparison, the DSO assignment with BRT means the
result of n = 2. The flow of SAVs means the sum of
the SAVs through all time on each link. In Fig. 8, the
red nodes mean the destination nodes. In Fig. 8a and b,
the thickness of links means the traffic volume of SAVs.
In Fig. 8c, the links on which the sum of SAVs in the
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Fig. 7 The BRT routes

DSO assignment with BRTs is more than that in the DSO
assignment without BRTs are red, the links on which the
value in the DSO assignment with BRTs is less than that
in the DSO assignment without BRTs are blue, and the
links on which the values are the same are black. Then, the
thickness of red and blue links means the absolute value, and
the thickness of the black links is fixed. Thus, the thicker
the blue link is, the more the number of SAVs in the DSO
assignment without BRTs is.

The number of SAVs in the area where the destination
nodes are gathered, or the center of the network, is large in
Fig. 8a and b. In Fig. 8, the flow of SAVs is large in the
central areas, and the inflow to the central area from the west

is especially large. We considered these results reflect the
actual road and travel patterns in the area, at least to some
extent.

Figure 8c indicates that the number of SAVs in the DSO
assignment with BRTs is decreased in most links. Thus, less
congestion is expected by introducing BRTs. Comparing
Figs. 8c and 7b, the amount of decrease is especially larger
in the links determined as the BRT routes. In addition, there
are some links that are not determined as BRT routes in
which the number of SAVs is increased. That’s because
movements to and from the station nodes are increased. This
result shows that the use of BRTs increases the number of
SAVs in some links.
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Fig. 8 The flow of SAV. A red
node denotes destination, a red
link in (c) means that the number
of SAVs in n = 2 is larger than
that in n = 0, a blue link in (c)
means that the number of SAVs
in n = 2 is smaller than that in
n = 0, and a black link in (c)
means that the number of SAVs
in n = 2 is equal to that in n = 0

3.2.4 Traveler Flow

In Fig. 9, the comparison of travelers’ flow between the
DSO assignment with BRTs and the DSO assignment
without BRTs is shown. In this comparison, the DSO
assignment with BRT means that of n = 2. The flow of
travelers means the sum of the travelers through all time on
each link. The color of links and the thickness of links in
Fig. 9c have the same meaning as Fig. 8c. Thus, in Fig. 9c,
the thicker the blue link is, the more the number of travelers
in the DSO assignment without BRTs is.

Similar to Fig. 8a and b, the number of travelers is large in
the center of the network in which the destination nodes are

gathered in Fig. 9a and b. We considered the actual road and
travel patterns in the area are reflected to the results because
the flow of travelers is large in the central areas, and the
inflow to the central areas from the west is especially large.
Figure 9c indicates that the number of travelers in most
links is decreased a little by introducing BRTs, whereas
that of travelers in a part of links, which are determined
as BRT routes or connected with the station nodes, is
considerably increased by introducing BRTs. This result
shows that travelers’ routing is gathered by introducing
BRTs.

According to SAV and traveler flows in Figs. 8 and 9,
the introduction of BRT causes traffic to be concentrated
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Fig. 9 The flow of travelers. The
red nodes denotes destination, a
red link in (c) means that the
number of SAVs in n = 2 is
larger than that in n = 0, a blue
link in (c) means that the number
of SAVs in n = 2 is smaller than
that in n = 0, and a black link in
(c): the number of SAVs in
n = 2 is equal to that in n = 0.

at BRT stations. It makes transfer at stations and rideshare
matching easier. In addition, only limited links will be used
intensively, making infrastructure investment efficient.

3.2.5 Average Speed and Cumulative Curves of Travelers

In order to investigate the dynamical features of the pro-
posed model, time-dependent average speed and cumulative
curves of travelers are derived. Figure 10 shows the aver-
age speed of travelers at each time step. The horizontal axis
represents time, and the vertical axis represents the average
speed of travelers.

Because the speed of BRTs is slower than that of SAVs,
the average speed in the network with more BRT routes is
basically smaller. However, the minimum speed is larger in

the network with more BRT routes; this is because the no
BRT case (n = 0) was suffered by traffic congestion caused
by SAVs. Thus, SAV-BRT systems would be slower than
SAV systems when the traffic congestion was not severe,
but it would be faster when severe congestion was possible.

According to the above results, the introduction of BRT
stabilizes travelers’ speed, possibly due to the mitigation of
traffic congestion.

4 Conclusion

An optimization model for the SAV-BRT system is
proposed. It is aimed to utilize unique advantages and
disadvantages of SAVs and BRTs in a complementing
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Fig. 10 Comparison of the average speed of travelers

manner: SAVs are fast and flexible, but the passenger
capacity is small; BRTs are slow and fixed-route, but
the passenger capacity is large. The model is based on
the dynamic system optimal assignment method, so that
important dynamical features of transportation systems are
captured. Furthermore, the model is formulated as a multi-
objective optimization problem, in order to investigate
the trade-off relations in SAV-BRT systems. This is one
of the unique features of the proposed model and could
be important for policy planners is that the model can
output diverse, various optimal solutions based on the
multi-objective optimization. The model outputs the Pareto
frontier, in which various states with various priorities to
objective values are included. Policy planners would able
to choose the most suitable state from the Pareto front
depending on the society’s future decision making.

Numerical experiments based on actual travel demand
data in Japan are conducted to investigate the quantitative
behavior of the proposed model. According to the results,
the model behaves reasonably. Some specific findings are
as follows. First, introduction of BRT enables efficient
transportation systems in terms of traffic congestion, but it
slightly increases average travel time of travelers. Second,
the number of SAVs can be significantly decreased by
introducing 1 or 2 BRT routes (e.g., decreased from 5700
vehs to 3800 vehs), and operational flexibility of the SAV
system also be increased by introducing BRTs. Third,
in terms of infrastructure construction, the introduction
of BRTs is a cost effective approach to reduce traffic
congestion. The proposed model and these experimental
findings would be useful to plan SAV-BRT systems in
the real world. However, the experimental findings depend
on the parameter setting. We have not investigated the
sensitivity to the parameter setting, but it will be important

for planning purposes and can be investigated by using the
model in the future.

The proposed model has some other future works.
Firstly, we cannot consider realistic situations, such as
cities with private vehicles. This model considers an ideal
situation where all vehicles are controlled to achieve the
system optimal. If private vehicles exist, traffic congestion
will be intensified, and BRT will be more advantageous.
Secondly, the development of efficient algorithms for the
proposed model is important as mentioned. This can be
done by applying the technique called Dantzig–Wolfe
decomposition [23]. Thirdly, this model considers SO only
and may not be realistic. The comparison between UE-
type models would be very interesting. In fact, the authors
are working on such analyses (i.e., SAV system in which
travelers’ route choice is determined by the dynamic user
optimal principle) and have obtained a preliminary result
[11].
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